dF=\mu \omega.
$$En tal caso, $\mu$ recibe el nombre de integrating factor y $F$ es una first integral of the Pfaffian system $\mathcal S(\omega)$. Tiene relación inversa con las symmetrising factors.
Given an ODE $\Delta$, we call integrating factor of $\Delta$ to any non vanishing smooth function $\mu\in J^m$ (the jet bundle) such that
$$ D_x(F)=\mu\Delta $$for a smooth function $F$ called first integral.
To see the relation between integrating factor of an ODE and the integrating factor of the associated 1-form go to the note first integral#3 b First integal of an m th-order ODE.
________________________________________
________________________________________
________________________________________
Author of the notes: Antonio J. Pan-Collantes
INDEX: